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1 Introduction

Coalgebras are being used for modeling computation systems such as labeled transition systems
or classes in object oriented programming languages [18]. Usually coalgebras are based on the
categorySET which contains far more sets and functions than can be computed in terms of Tur-
ing machines. Especially when using final semantics one gets models that are not implementable
on a machine.

Consider the example of the functb( X' ) = {0, 1} x X which can be used to model binary
streams. The final modél, ¢) for the class off'-coalgebras contains all functiorfs: w —

{0,1}. The structure map maps somg to (f(0), \z € w.f(x + 1)). While the structure map

may be regarded computable, not Al w — {0, 1} can represented in a machine. Even in the
case of unbounded memory capacity, the state space of an implementation of the final model can
not contain non-Turing computable functions.

In algebra the problem of implementability has led to the development of the notion of com-
putable or effective algebra [23]. The main idea is to consider enumerations from sets of natural
numbers to the carriers of algebras such that the algebra functions can be tracked by recursive
functions on the domain of the enumerations. This way the algebra functions can be simulated
by recursive functions.

In this paper we develop a notion of computable coalgebra similar to the notion of computable
algebra. A coalgebra that s final for the class of computable coalgebras is constructed and shown
that it lacks important computability properties. This motivates the development of a notions of
partial computable coalgebra for which the final coalgebra is shown to have nicer properties than
the final model for total computable coalgebras.

1.1 Related Work

Our theory of computable coalgebras will be based on the theory of numbered sets or indexed
sets. Indexed sets have been studied by Mal'cev [11] and Erschov [5] [6] [7]. The main idea
of indexed sets is that every element of a set can be addressed by a natural number. The great
disadvantage of this approach is that these sets must be countable.

To overcome this pitfall Weihrauch [24] developed a theory for so called type 2 sets where
every object is defined as the limit of a sequence of finite objects. A way to define computability
for real valued functions has been developed by Grzegorczyk [10]. He defines real numbers
to be computable if they are limits of computable Cauchy sequences of rationals. These two
approaches have been compared by Speen et al [22] and found to be equivalent.

The notion of effective algebra has been studied in depth by Tucker et al [23]. It is based
on indexed sets and recursive functions. They show, that every computable or semicomputable
algebra can be specified using initial algebra semantics and a finite or enumerable term rewrite
system respectively. The case of final algebras was studied by Bergstra et al [23].

The notion of partial coalgebra has been used by Goldin et al [9] to model nontermination of
transition systems. The case of infinite silent transition steps which would lead to nontermination
is represented by nondefinedness of the transition for the respective state. The use of partial
coalgebras in a computability context has been proposed by Reichel et al [8]. It was motivated
by the fact that in a computable environment not all partial coalgebras can be modeled by total



coalgebras for some functét(X) + 1, where the case of undefinedness of the structure map is
captured by the right injection.

A more general approach to partial coalgebra would be to consider total coalgebras for some
functor F'(X') + X where the right injection can not be observed. This abstraction o) +
X to F(X) could lead to a partial mapping in case repeated application of the structure map
does never result in the left injection. Such functors and abstractions were considered in [20]
and [17] without defining partial coalgebras.

Computability in coalgebras has so far only been considered by Pattinson [14]. This work
focuses on computability on final coalgebras by using an approximation-based approach and
shows how computable functions can be defined in final coalgebras. The question if some model
is implementable on a machine is not discussed. There exists a notion of recursive coalgebra that
was introduced by Osius [13]. The idea of that notion is to extend the coalgebra by some kind
of induction scheme to allow inductive definitions. The relation between our approach and
recursive coalgebras is shortly discussed at the end of this paper.

2 Preliminaries

Itis assumed that the reader is familiar with the theory of coalgebras and the theory of categories.
For an introduction to coalgebras see [21] .

We will rephrase two definitions of final objects for a category that are needed in this paper.
First we give the standard definition for an object of a category that is final in that category.

Definition 2.1  An objectZ of a categoryC is called final object of that category if for every
objectA of C there is a unique arrow: A — Z.

It turns out that the requirement faf to be an object of the category is sometimes too strict
such that no final object exists. There might, however, exist objects with the finality properties
outside of the category. The following two definitions taken from [12] give a notion of final
object in a super-category.

Definition 2.2 Let C be a category]D be a subcategory of and A be an object ofC. A
collection of arrowsS : (fp : B — A)peop) is called a sink and denoted i5y: D = A.
IfS: (fp: B — A)peonm) isasinkandh : A — C'is an arrow inC thenS’ : (ho fp :
B — C)peopn) is @ sink denoted by o S.
A SIinkS is epi if for all morphisms, : A — Candg: A — C,goS = hoS impliesg = h.

Now we can define the notion of final object that is located in a super-category. In order to
keep apart the two notions of final object we will distinguish them as "final object of a category”
and "object that is final for a category”.

Definition 2.3 LetC be a categoryD be a subcategory d and A be an object of. We say
that A is final object forD in C if the following is satisfied:

e there exists a unique sik: D = A;



e the sinkS is epi

From the definitions of the sink and the final object follows immediately that an object of a
category that is final for that category is the final object of that category.

Proposition 2.4 LetZ be an object of catego that is final for the categor{ thenZ is the
final object ofC.

2.1 Basic recursion theory

While this paper is concerned with coalgebraic issues and no recursion theoretic results are
presented, a basic notion and results for recursive functions will be needed to understand the
following paper. For a detailed discussion of recursion theory see [4] and [3].

The set of natural numbers is denoteddy Computable functions are defined as partial
recursive functions. The class of partial recursive functiBfisof some arityn is enumerable
and there exists a + 1-ary partial recursive functio®” : w x w™ — w such that for every
¢ € R" there exists some € w such thatd™ (e, z) = ¢(z), x € w™. The numbeke is called
the (recursive) index of. Since in this paper only unary recursive functions are used we will
omit the arity and writeb instead of®!. A partial recursive functiorf is called total on some
setQ? C wif f(n) is defined for allh € €.

A relation R C w" is called decidable or recursive if there exists a total recursive function
x @ w" — {0,1} such thaty(x) = 1if x € R andx(z) = 0 otherwise. Sucly is called
characteristic function. A number is a characteristic index of relatiof if » is index of the
characteristic functior of R.

Arelation R C w" is called semidecidable or recursively enumerable if there exists a partial
recursive functiorf : w™ — wsuchthat: € Riff f(x)is defined. Anumben is a characteristic
index of R if n is index of suchf. A relation R C w" is called co-semidecidable or co-
recursively enumerable if the relatidhwherez € R iff » ¢ R is semidecidable.

While every partial recursive function can be named by an index it is not decidable if two
partial recursive function®”(z) and®"(y) for = # y,x,z € w are equal. Likewise it is in
general not decidable if some partial recursive function is defined for some.

It is a known fact in recursion theory, that the set of indices of all recursive functions that are
total on some domaif is not recursively enumerable. Since we will use this result we give
a proof of a special case for recursive functions frerto {0, 1}. This shall demonstrate the
diagonalisation method that is often used to show that some set is not recursive.

Theorem 2.5 A set that contains at least one index for every total recursive functiondrton
{0, 1} can not be recursively enumerable.

Proof Assume there exists a recursively enumerable/sebntaining at least one index for
every total recursive functions. Then there exists a recursive fungtian — w those range is
I. Consider the functiop : w — {0, 1} with

g(n) =1—=&(f(n),n).

Obviously g is total recursive and different to every total recursive function with indexk. in
Hencel can not be an index set for all total recursive functions. O



Alternatively such results can be derived from Rice’s Theorem, a central result in recursion
theory which states, that the only sets of partial recursive functions that have a recursive index
set are the empty set and the set of all partial recursive functions. An index set for some set of
recursive functions contains all indices of all functions in the set.

There exists a bijective encoding function ) : w? — w that is total recursive such that the
projectionsr; 2 : w — w With 71 ((n, m)) = n andm({(n, m)) = n are recursive functions too.

2.2 Categories of Numberings

In order to use recursive functions in coalgebras we need a notion for encoding elements of the
coalgebra as natural numbers. Like in the theory of computable algebras we use humbered sets.

Definition 2.6 A numbering of a setl (numbered Set) is a paif24,v4) consisting of a set
Q4 of natural numbers and a (total) surjectiony : 24 — A.

A morphism between two numberings : Q4 — A andvg : Qp — B is a function
f A — B, which can be tracked by a functigfy, : 24 — Qp,i.e. vgo fo = fovsor
equivalently the following diagram commutes3aT.

B
|

A
,,AT
— =0
Lo fa p

f

_—

Numberings and morphisms define the categdB8gT of numberings.

Please note that the tracking function is not part of the morphism. There could be several
functions that track the same morphism. Of course, for each tracking function the diagram must
commute. A tracking function, on the other hand, can only track one morphism.

Somen € Q4 can be regarded to encode thee A = v4(n). Due to the surjectivity of’ 4
this allows us to address everye A by some natural number. This property is used to introduce
a computability notion into the category of numberings. The kernel relatjorC Q4 x 24 on
the numbering/4 : Q4 — Aisforz,y € Q4 defined byr =, , v iff va(z) =va(y).

Definition 2.7 A morphismf : v4 — vpg is called effective if it can be tracked by a recursive
function fq, that is total on the domain af4. If e is recursive index of thaf, then we also say
thate tracksf.

A numberingv4 : Q4 — A is called computable, semicomputable, co-semicomputable if
the domairf24 and the relation=,, are both recursive, recursively enumerable, co-recursively
enumerable respectively.

The recursivity ofQ2 4 allows us to decide wether € w encodes some € A. The recur-
sivity of the kernel relation allows to computationally distinguish numbers that encode different
elements of the set. Since numberings will be used as carriers for coalgebras one would like to
use computable numbering which give maximum control over the enumerated set.



The category formed by numbered sets and effective morphisms will be eNIBHT. It is
of special interest and it will be shown that the category of coalgebras on this category has a
final object.

3 Computable Functors

For building coalgebras on numberings we need a notion of effectivity for functors. We consider
endofunctors on the categoNSET. The notion of effective functor was introduced in [14] and
is here slightly modified to represent the different degrees of computability.

Definition 3.1 A functorZ’ : NSET — NSET is called effective if there is a recursive function
¢ such that whenevef : (Q4,v4) — (Qa,va) € NSETand Ff = g : (Qp,vg) —
(Qpr,vp) and fq tracks f thenor(fq) tracksg.

The effective functor fulfils the least requirement, namely that recursive tracking functions
are recursively mapped to recursive tracking functions. Please note, that an effective functor
on NSET is also a functor on the subcatega@MSET. The more strict computable functor
also requires recursive domains of numberings to be mapped to recursive domains and recursive
kernels to be mapped to recursive kernels.

Definition 3.2 An effective functoF' is called computable if wheneve(Q4,v4) = (B, vB)
then

1. if Q4 is a recursive (recursively enumerable, co-recursively enumerable) sefxg is

2. if =, is recursive (recursively enumerable, co-recursively enumerable) sg jsand
there is a recursive functiotr such that ife is characteristic index of, ,, thenyr(e)
is characteristic index of,, ;.

We will use the following notation: For some; : Q4 — AandF : NSET — NSET we
write F(va) : Qpay — F(A). Please note, thaf is not defined on sets, thus(A) is not a
formally correct term. Here we use it to denote the enumerated get.of) to make diagrams
more readable. One has to be careful, becaus ndv% are two enumerations of the same
setA then it is not guaranteed that v}, ) and F(v3) enumerate the same set.

Likewise we usef'( f) to denote a tracking function far(f). Again one has to be careful,
because the tracking function is not part of the morphism and there might be more than one
tracking function forF'( ). The following diagram illustrates the case for the morphis(if)
wheref : vy — vp:

F(ay 20

F(VA)T TF(VB)

F(B)

Qpa) TS| Qp )

The following lemma states that computable and effective functors can be constructed from
computable and effective functors.



Lemma 3.3 The composition of two effective functors yields an effective functor. The compo-
sition of two computable functors yields a computable functor.

Proof Assume effectivé”, G : NSET — NSET, with corresponding r and¢g. Letf : vq4 —
vp be tracked byfq. ThenF'(f) is tracked by r(fo) andG(F'(f)) is tracked bypg (o r(fa))
makingG o F' an effective functor.

Now assumé&’ andG computable and4 : 24 — A be a computable numbering. SinEés
computableF'(v4) is computable and sina& is computabler(F(v4)) is computable too. O

The notion effective and computable functor is extended to endofunctdgg oin the fol-
lowing way:

Definition 3.4 A functorF' : SET — SET is called effective/computable, if there is an effec-
tive/computabley : NSET — NSETwith U o G = F o U, whereU : NSET — SET is the
canonical forgetful functor. In this case we céllan effective extension &f.

Some examples of effective functors:

Example 3.5 Letve : Q¢ — C be the (constant) numbering of some 6et The constant
functor Fo : NSET — NSET maps eachvy € NSET to vo and eachf : vy — vp to the
identity mappingid : vc — v¢. Since the identity mapping can be tracked by the identity
function, which is computabléy- is effective. If additionally is computable so i$¢. O

In the next examplegliv is the symbol for integer division anthod is remainder of integer
division.

Example 3.6 An effective extension of the functb(X) = 2 x X = {0,1} x X in NSET,
where X represents the next state afid, 1} some output, can be defined as follows: Let:
Qx — X be the numbering aX. The numbering,, x : Qo x — 2 x X is defined by

n — (nmod 2, vx(n div 2))

with domain
n € Qoxx < (ndiv2) € Qx.

This means, i enumerates: € X then2 x n enumerateg0,z) and2 x n + 1 enumerates
(1,z). If Qx isrecursive so i$),x x. The characteristic functiogx : Qx x Qx — {0, 1} of
=x is mapped tog2x x : Qaxx X Qaxx — {0,1}, defined by

1 if (nmod 2 =m mod 2) A xx(vx(n div2),vx(mdiv2)=1

X2xx (1, m) :{ 0 otherwise

. In other words,(n, m) is in x2x x exactly ifn andm have the same output and their next
states are inyx. A morphismf : vx — vy is mapped toF'(f) : F(vx) — F(vy) with
F(f)(0,a) = (0, f(a))and F(f)(1,a) = (1, f(a)). If fq is tracking function off, thenF'( fq)

is a tracking function for'( f) with

F(fq)(n) = (nmod 2) + 2 % fo(n div 2)).



The functor property is checked by

Flga) o F(fa)(n) = Flga)((n mod 2) + 2+ fo(n div 2)))
= (((nmod 2) + 2 * fo(n div 2)) mod 2)
+2 x go(((n mod 2) + 2 x fo(n div 2)) div 2)
= ((nmod 2) mod 2) 4+ 2 x ga((2 * fo(n div 2)) div 2)
= (nmod 2) 4 2 X go(fa(n div 2))
= Flgao fo)(n).

The mappings of the characteristic function and the tracking function are clearly computable.
HenceF' is a computable functor. O

The exponent and powerset functors are clearly not computable because the cardinalities of
function spaces and powersets are in general larger than the cardinalities of their arguments that
are countable. For cartesian functors we can state the following:

Lemma 3.7 SupposeF’ : SET — SET is build from computable constant functors and the
identity functor by means ef and x. ThenF' is computable.

Proof Proof: Numberings for- and x can be constructed with the tupling of natural numbers
making them computable. By Lemma 3.3 all functors build from computable constant functors
and the identity functor by means @fand x are computable. O

An effective extension to the exponent functor can not be defined because for counable sets
A, B the function spacel = B is not a countable set. Also, the sét=- B contains functions
that are not computable with respect to possible numberings afid B such that the eval
morphism of such an exponent object would not be effective. We are, however, interested in
effective morphisms.

In order to make the eval function of a possible effective exponent functor effective, one would
have to restrict to effective morphisms, i.e. a category that only contains effective morphisms
which iseENSET. An exponent object ¢ in this category could be thought of containing all
effective morphisms fromy to v or all total recursive functions frofic to Qx that track a
morphism. Next, we define an endofunctoreMSET that, if given some numbering-, maps
any numbering/x to a numbering of the effective morphisms fregto vy .

Example 3.8 We use an enumeration function: w x w — w for partial recursive functions
to construct an exponent object. Let : Q- — C andvy : Qx — X be numberings. The
functiontc— x : Qo x — C = X is defined by
Qc=x = {n | ®(n) tracks a morphism betweeg andvx },
n — Anc € Qc.vx(®(n,n)), wherevg(n.) = c.

Ve x IS nota numbering because itis not surjective. We definex : Qo= x — range(vo=x),
vo=x(n) = Po= x (n) which is a numbering. We will show, that the mapply,,, : ENSET —



ENSET, vx — veo=x isafunctor. Letf : vx — vy be tracked byfq thenE X, (f) is tracked
by
M€ w.d T (\r € w.fo(®(n,))).

In other wordsE X, (f) maps some functioh : C — X to f(h). To show the functor
property letf : vx — vy, g : vy — vz be tracked byfn andgq respectively. Then

EX,.(90) o EX,.(fa) = An.®@ (ga(\z.®(n, x))) o An.® Y fo(A\z.®(n, x)))
= 7' (go(Az.@(An.® ! (fo(Az.®(n, 7)), 7))
= .0 Y (go(\z.®(@ 7 (fo(Mz.®(n,z))),z)))
= . N (ga(fa(Az.®(n, x))))

= EX,. (900 fa)

The functorE X, is effective because the mapping of the tracking function is a recursive func-
tion. It is not computable because neitheﬂigXUC recursive nor is=,_ , decidable. This
follows directly from Rice’s theorem. O

Now we want to show, that the functérX, . is a constant exponent functor aNSET that
maps somex to the exponent objecty¥c. First we need a product functor. For the numberings
va: Q4 — Aandvg : Qp — Blet

vaxp : Qaxp = Ax B, (n,m) — (va(n),vp(m)).

vaxp together with the projections ol x B is a product ofv4 andvp in NSET because
A x B is product of A and B in SET. The projections can be tracked by the projectians
andmy of the tupling function. We define the product functox _ : NSET x NSET — NSET

by (va,vB) — vaxp and the mapping of arrows of in SET. Since(_,_), 7, andm are

computablex is also a product functor iBNSET.

Theorem 3.9 The functorE X, is a constant exponent functor in the categalySET. The
numberinguEXUC(,,X) is an exponent object.

Proof We have to show that there exists a morphisml : VEX,(A)xC — VA with the prop-
erty that for eachf : vgxc — va there exists exactly ongf : v — VEX, (A) such that
f=evalo Af x A.

evalg

Qpx,,.(a)xc 04
iVEXVC(A) VAL
EX],.(A) x C ——<v! A
|
BxC fa
(AfXC)Q TVBX(;
QB><C



Leta € A,b € B,c,x € C andn,m € w, we define:
eval : (Az.g(x),c) — g(c) tracked byevalg : n — ®(m1(n), ma(n))

M b de.f(b,c) tracked by(Af)q : n — &L (M. fo((mr1(n), m)))

then the diagram commutes. O

4 Computable Coalgebras

Having some categories and a notion of functor we can define coalgebras in the usual way as
morphism from some objeety to F'(v4). Unlike in computable algebra the numbering is part
of the carrier. This allows us to reuse standard coalgebra notation.

Definition 4.1 A numbered coalgebra for some funcfor NSET — NSET is a tuple
(va:0Q4 — Aja:va — F(ra)).

Let(v4,«) and(vp, 5) be numbered coalgebras for some funckorA morphismh : v4 —
vp is a numbered coalgebra homomorphismiif h = F'(h) o «.

The lettersA, B etc will be used to denote coalgebras. The following diagranggincommute
for numbered coalgebras and numbered coalgebra homomorphisms:

A—2 F(A) A—" B
TVA TF(VA) O‘l lﬁ
Q4 —5 Lra) F(A)WF(B)

numbered coalgebra numbered coalgebra homomorphism

Please note that again the tracking function is not part of the coalgebra. The structure map
consists only of a function from the set that is numbered by the carrido the set that is
numbered by(v4). There could be several possible tracking function for one structure map.

The numbered coalgebra represents the most general case of coalgebras in this paper. Com-
putability notion is introduced as restrictions on numbered coalgebras. The reason is that in
general one does not know if some numbered coalgebra is computable. Some coalgebraic con-
struction of a coalgebra from computable coalgebras may yield only a numbered coalgebra.

Notation 4.2 Numbered coalgebras inherit the attributes effective, computable, semicomputable
and co-semicomputable from their carriers and morphisms. For example an effective coalgebra

has an effective morphism as structure map. A computable coalgebra contains a computable
numbering as carrier and an effective morphism as structure map.

The properties of the single coalgebra types are listed in figure 1.
Numbered, effective, computable, semicomputable, and co-semicomputable coalgebras and
their homomorphisms form categories. The following picture shows the subcategory relation

10



of these categories. The category of numbered coalgebras contains all other categories and the
category of computable coalgebras is contained in all other categories.

numbered

U

effective

T TR

semicomputable co-semicomputable

Ty

computable

In this paper we will consider the coalgebras to be numbered unless specified differently. We
will use the notatioNSET for the category of numberefl-coalgebras andNSET for the
category of computablé'-coalgebras.

Example 4.3 We give an example of a computable coalgebra for the computable binary stream
functor from example 3.6. Let the carrier of the coalgebrade w — w the identity enumer-
ation of natural numbers. The structure map id — F(id),n — (n mod 2, n div 2) can be
tracked by the functiong = id becauséd = ag anda = F(id).

ni = (n mod 2, n div 2)
id IF(id)
ni n
an=id

The structure map can be regarded to output a binary encoding of the natural number it was
started with. This coalgebra is computable because, the domain of the cartiewisich is
recursive, the kernel of the carrier &, = {(n,n) | n € w} which is decidable and the
structure map can be tracked by the recursive functibn O

The notion of bisimulation is given in the usual way:

domain kernel structure map
numbered / / /
effective / / recursive

semicomputable | recursively enumerable | semidecidable | recursive
co-semicomputable co-recursively enumerableco-semidecidable recursive
computable recursive decidable recursive

Figure 1: Computability properties of the coalgebra types
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Definiton 4.4 LetA = (vq : Q4 — A,a) andB = (v : Qp — B,3) be numbered
F-coalgebras. A numberingg : Qr — R for R C A x B is a bisimulation between the
coalgebrasA and B if there exists a transition structurer : vg — F(vg) such that the
projections fromR to A and B are morphisms fronvg, ar) to A and B.

a € Aandb € B are bisimilar if there exists a bisimulatiarg : Qr — R betweend and BB
such that(a, b) € R.

A bisimulation that is an equivalence relation is called bisimulation equivalence.

The reminder of this section will show some basic results for numbered coalgebras, homo-
morphisms and bisimulations. Since the primary goal of the paper is to construct a numbered
coalgebra that is final for the class of computable coalgebras we will restrict to those results that
are needed.

Theorem 4.5 Let ' : NSET — NSET be a functor. In the categorlMSETx of numbered
coalgebras all coproducts exist.
Proof Consider the following diagram iSET:

Vy

Qu

U

1A
\ VA TVAJrB TVB

AN
Q4 Qp

— QaiB =<5
tA 'B

A + B is the coproduct irSeT. We have to show, that there exists a numberingder B and
all the tracking functions.
The numbering/ 4 p can be given as:

2n € Qaip < neEQy

2n+1€Qap & nefly
va+B(2n) = ia(va(n))
varp(2n+1) = ig(ve(n)).

With i}(n) = 2n andi$}(n) = 2n + 1 can the injections be shown to commute. The tracking
functionhg is given bth(Qn) = kq (’I’L), hQ(QTL + 1) = lg such thath o vayrp =vyohg. O

For computable coalgebras the construction of the coproduct would yield a computable coal-
gebra what can be seen from the definition of the numberings and the tracking functions.

The next result is an adaption of a standard result from [21]. Heigan arbitrary functor
on the categonNSET. The proof can be adapted to numbered coalgebras because it mainly
contains of compositions of morphismsNSET.

Lemma 4.6 The image(f, g)(vr) of two numbered coalgebra homomorphisfnsvr — vy
andg : vp — vp is a bisimulation betweefv 4, o) and (vg, 3).

12



Proof Consider the following diagram iNSET:

{f,9)(vr)

P RS

v 1% v
A 7 T g B

Morphism j is defined byj(t) = (f(t),g(t)) for which a tracking function can be given
by fa,gq and the tupling of numbers. Functiaris any right inverse forj, joi = 1, m
andmq are projections. The transition structure (f, g)(vr) — F({f, g)(vr)) is defined by
v=F(j)oaroi.

((f,9)(vr),~) is bisimulation betweefv 4, «) and(vp, ) because

F(mi)oy = F(m)oF(j)oaroi
F(mioj)oaroi
F(f)oaroi
agofoi

= (x4 O

The same holds for,. O

Using the previous result we can proof the existence of greatest bisimulations between num-
bered coalgebras.

Theorem 4.7 The unionJ,, v% of a finite family{v};}; of bisimulations between numbered
coalgebras4 andB is again a bisimulation.

Proof |J, vk = (m1,m) (>, vE). Since the coproduct of two numbered coalgebras is again a
numbered coalgebra it follows from lemma 4.6 that the union is a bisimulation. O

Corolary 4.8 The set of all bisimulations between numbered coalgeldrasd 5 is a complete
lattice with least upper bound given ky, v% = [, vk.

The greatest bisimulation betweghand B exists and is denoted by = |J{vr | vr IS a
bisimulation betweenl and .

The existence of greatest bisimulations between numbered coalgebras implies the existence of a
greatest bisimulation between computable coalgebras. It does not imply computability proper-
ties for the greatest bisimulation such as a computable numbering and effective projections.

Definition 4.9 Letvg : Qr — R be a bisimulation equivalence on the numbered coalgebra
(va,a). The quotient4 /R is defined ag 4/ : 24 — A/R whereA/R is the quotient ofd
by Randv,r(n) = [va(n)]. The quotient mapr : v4 — v/ is defined by, € A +— [a].

Please note that the numberingi®tloes not influence the quotient. It must be mentioned in the
definition, becausey, is a bisimulation. The quotient of a numbered coalgebra by a bisimulation
equivalence defines a quotient coalgebra:
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Proposition 4.10 Letvg : Qr — R be a bisimulation equivalence on a numbered coalgebra
(va,a). Leter : va — vy g be the quotient map aR. Then there is a unique transition
structureay /g : va g — F(va/r) Such thatpg is a numbered coalgebra morphism.

Proof When forgetting the numberings, the unique transition struetyyg; : A/R — F(A/R)
is known to exist. Remains to show that there exists a tracking function for. We use

af} g = F(id)oagoid™".
Qpa) ~aa Q4
F(id)l idi
aQ
Qpa/ry <L Qasr = Qa

Then the coalgebra diagram fary, r, @4, r) cOmmutes because
aA/ROVA/R = aA/ROEROVAOid_l
= F(er)oaovqoid !
)

F(ep) o F(va)oagoid™?
= F(va/r) o F(id) o ag oid™!
(

|
T

va/R) © &g
U

At last we can make two statements about the computability of quotient coalgebras.

Lemma4.11 Letvyr : Qr — R be a bisimulation equivalence on a numbered coalgebra
(va, a) for some effective functdr then

1. If ais tracked by a recursive function so is the quotient coalgébtgr, a4 /r)-
2. Ifvg andv 4 are computable (semicomputable, co-semicomputable):sg js

Proof Immediate from the definitions O

5 Final Model

In coalgebra theory the existence of a final coalgebra is a central issue because co-recursion and
final semantics are important in coalgebraic specification. Thus, it is interesting to know if there
exist final objects in the particular categories of coalgebras presented.

For the category of numbered coalgebras the answer is negative. For instance in the case of the
binary stream functor the carrier of a final coalgebra would contain the set of all binary streams
which has a cardinality larger than the set of natural numbers, making a numbering impossible.

This section will focus on final models for categories of effective coalgebras. We will show,
that there exists a final coalgebra for the category of effective coalgebras. The category of
computable or semi-computable coalgebras does not possess a final object, however, there exist
effective coalgebras, that are final for the class of computable or semi-computable coalgebras.

14



Proposition 5.1 The categories of computable coalgebras and semi-computable coalgebras
do in general not have a final object.

Proof We show an example of a functor which does not admit a final coalgebrat’ betthe

binary stream functor from example 3.6. First, we show that every element of a semi-computable
F-coalgebra defines a computable binary stream(ket Q4 — A, o) be a semi-computable
F-coalgebrays(n) = a,n € Q4 andg : w x w — {0, 1} be the function that computes the
output ofn afterm steps defined by

g(n,0) = a(n) mod 2
g(n,m + 1) = g(a(n) div2,m)

Then the binary stream defined by thiscan be given byf : w — {0,1}, f(m) —
g(n,m). Since« is total recursive orf24 f is total recursive, such that every element of a
semi-computable (and also computakiteroalgebra defines a computable binary stream.

Next we show, that every computable binary stream represents the observable behavior of
an element of a computablé- coalgebra. Letf : w — {0,1} be a total recursive function
specifying a computable binary stream. ConsiderFanoalgebra with carriefd : w — w
and structure mapg : n € w — f(n) + 2% (n+ 1). The elemend defines the stream
fiw—:{0,1}:

f'(m) = (f(m)+2*(m+1)) mod 2
f(

m)

and hencef = f.

If there existed a final computablg-coalgebra then all computable binary streams would
occur in it. So we could use the recursive domain of the carrier and the computable tracking
function of the structure map to enumerate all computable binary streams, i.e. all total recursive
functions fromw to {0, 1}. This contradicts the fact that the set of total recursive functions is not
recursively enumerable by theorem 2.5. Since a computable coalgebra is also semi-computable,
a final semi-computablg-coalgebra would contain all computable binary streams too, such that
the same argument applies as above and no final semi-computable coalgebra ekists for

Alternatively one could consider decidability of the kernel relation of some final computable
coalgebra. From Rice’s theorem follows then, that the equality of two recursive functions is not
decidable. O

Even though there does in general not exist a computable final coalgebra for effective functors
on NSET there might exist one in some extreme cases, usually of very simple functors. The final
coalgebras for such functors are very simple and do not have any practical use. Here are 2 such
examples.

Example 5.2 Consider the computable functétl : NSET — NSET that maps objects and
arrows to themselves. The coalgebra with the carder: {0} — {x},v.(0) = % and the
identity function as structure map is final for the class of computétieoalgebras. The final
morphism maps every element of a coalgebra tnd is tracked byfo : w — {0},n — 0.
(v«, id) is computable. O

15



Example 5.3 Consider the constant functdic from example 3.5 that maps each numbering
to the constant numbering- : Q¢ — C, and the effective coalgebi@, id), whereid is
the identity function mapping € C to itself. There exists a unique morphism from every
numberedF'- coalgebra(v 4, «) to (v, id), namelya, because the homomorphism property
holds: Fo(14) o = Fo(a) o = id o av.

Hence, (v¢,id) is final for the class of (semi-)computahle -coalgebras iffv is com-
putable. Ifve is only semicomputable then it is only final for the class off semi-computable
Fo-coalgebras. O

As we have seen above there does in general not exist a final computable coalgebra. This
problem stems from the fact that sets of indices of total recursive functions are not recursive.
Nevertheless the sets of indices of total recursive functions do exist but are not recursive.

This suggests that there might exist effective coalgebras that are outside the category of com-
putable coalgebras for some effective functor, which otherwise have the property of final coalge-
bras, i.e. there exists a unique morphism from every computable coalgebra to it. We will show
that such a coalgebra exists for every effective functor by constructing such a numbered final
coalgebra and show that it is effective.

A known approach for constructing the final F-coalgebra is as quotient of the disjoint union
of all F-coalgebras with respect to its greatest bisimulation (see [21]). Such a final coalgebra
contains all possible behavior from all F-coalgebras.

This approach is modified in the following way: We assume an effective fudttad SET —

NSET with recursiveg as mapping for the tracking functions. The behavior of some element
a of some computable coalgebfa,, ) is characterized by the tracking functiag, of o and
anyn € Q4 with v4(n) = a. So we use the set of all paifs, ¢) of natural numbers and
recursive functions such thatis tracking function of some computable coalgebra those carrier
numbering domain contains

Zo={(n,f) | n €w, frecursive, I(vy : Q4 — A,a).(n € Q4 A f tracksa)}

The numbering fot7; is given using the enumeration function for partial recursive functions
and tupling of natural numbers

vz, - QZO - Z(), <n, e) = (n, @(6))

where(n, e) € Qg, iff (n,®(e)) € Zy. When constructing the structure map Gy we have
to consider, thatn, ¢) is intended to represent the behavior of some elementcoded by
and tracking functiornp. The final morphism for coalgebfa 4, «) will map a to (n, ¢). This
fact is depicted in the following diagram BET showing computable coalgebfa,, «) and the
numbered coalgebr@,, o):
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va(m)

Lr 2oy @ o
va
%0) \
F(Z) F(A)

The tracking functiorng, has the index such thatd(my((n,e))) = aq. F((id, e)) is given
by ¢r((id, e)). The tracking function

Con = F({id, e))) o ®(m2) 0 m1
with F((id, e)) = F({m1,72))) defines the structure map

Co: Zo — F(Zy) = F(vz,) o G o vy,

making(vz,, (o) @ numbered coalgebrzatg0 is an arbitrary inverse afy,. (q is independent
of the actual choice of the inverse, because the right projections of two different tuples that
enumerate the same elementffdenote the same recursive functions such that the application
of the definition of¢yq, yields the same mapping.

In order to get rid of duplicate behavior (w2, , {y) we build the quotient with respect to the
greatest bisimulatior z, z,

(VZ7 C) = (VZm C0)|NZOZ0'

Proposition 5.4 The coalgebraZ = (v, () is final for the class of computable coalgebras
for the functorF'.

Proof First, we have to show thaf forms a unique sink by constructing a morphisgfrom
any computable coalgebrd = (v4, «) to it. The morphismy : A — Z a — (n,«a) where
va(n) = ais tracked by(id, e), the tupling of the identity function and any indexf aq. ! 4 is
a numbered coalgebra homomorphism because

Cola = Flvz)olaovy ol
= F(vz)oF((id,e)) oagom ovy, ol
= F(
= F(
= F(

oF(VA)oaQoTrloyZ oly
oaoon7rloyZ O'A

)
)
)o

|
’11

HenceS = (14 : A — 2) gcop(enser,) IS @ sink. It is unique becausg is the quotient by
the greatest bisimulation, hence simple and there is at most one arrow from every coalgebra in
NSETr toit.

17



Epiness: Consider an elementf someF-coalgebrad, an F-coalgebra3 andf, g : Z — B
with f o S = g o S§. Sincel 4 is unique there is exactly one € Z that is an homomaorphic
image ofa. If f(l4(a)) = g('a(a)) thenf(z) = g(z). Since this holds for all elements of all
F-coalgebras, it holds that for alle Z f(z) = g(z). Hencef = g. O

Example 5.5 We consider the final coalgebra for the class of computable coalgebras for the
binary stream functor from example 3.6. Sofnee) € Q2 behaves as follows:

¢

(n,®(e)) (®(e)(n) mod 2, (®(e)(n) div 2, P(e)))
Vzﬁ F(VZ)J
(n, et o (®(e)(n) mod 2) + 2 x (P(e)(n) div 2,e)

One can think of this final coalgebra to be identical to the coalgebra containing all computable
binary streams, i.e. all total recursive functiops w — {0, 1} that are enumerated b¥. The
structure map would map somge w — {0, 1} to (¢(0), Az.¢(z + 1)). O

Next we consider the computability properties of the constructed final coalgebra

Theorem 5.6 LetF : NSET — NSET be an effective functor withange(F(v)) # () for any
numberingy. The numbered coalgebi@ that is final for the class of computahlé-coalgebras
is effective but not computable.

Proof Z is effective, because it is tracked by a recursive function which follows from the defi-
nition of (yo and lemma 4.11.

Z can not be computable becaug can not be recursive. This is becaus¢(2,) would be
an index set, since by definition &, either all indices of a recursive function are in it or none.
By Rice’s theorem such a set is either empty.orw would include the index for the nowhere
defined function which can not track a computable coalgebra because we don't allow partial
structure maps. The case of empty is not possible because the rangefdl’) is nonempty
such that there is at least the tracking function that maps dbf{(v) to an existing element of
dom(F(v)). O

The case of the constant functor to the empty set is deliberately excluded because theorem
5.6 would not hold for it. In order to have a structure map to the empty set the carrier of the
coalgebra must be empty too, including the domain of the numbering. Henesuld be a
numbering of the empty set which is trivially computable.

A coalgebra that is final for the class of semi-computable coalgebras for some functor can be
constructed analogously. The computable coalgebra property is only used in the definijon of
Thus, changing the definition to semi-computable coalgebras results in an effective coalgebra
that is final for the class of semi-computable coalgebras. If we used effective coalgebras, then
the result would be an effective coalgebra, that is final for the class of effective coalgebras.

Corolary 5.7 The category of effective coalgebras has a final object.
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Proof The application of the definition diz, {) to effective coalgebras yields by proposition
2.4 a final effective coalgebra. O

As we have seen, a reason for the fact that a coalgebra that is final for the class of computable
coalgebras is not computable is the non-recursivity of the domain of its carrier. There are,
however, cases of simple functors in which the domain of the carrier is recursively enumerable
or its kernel is decidable. In general the domain and the kernel of the final effective coalgebra
are non-decidable. To illustrate this, let’s look at two examples of coalgebras that are final for
the class of coalgebras for some functor.

Example 5.8 Consider the constant Functdiz from example 3.5. Then

Qz ={(n,e) | P(e,n) | A P(e,n) € Qc}

which is recursively enumerable exactl¥it: is recursively enumerable because tidga, n) €
Q¢ is semidecidable.

The kernel=,, can be decided by checkingdf(e;,n1) = ®(e2,n2), which is possible
because; € dom®.,). Hence, ifvc is semicomputable so is the final coalgebra for the class
of computable coalgebras for the constant effective functogto O

Example 5.9 We look at the properties of the final effective coalgebra for the class of com-
putable coalgebras for the binary stream functor from example 3.6.

The domain of the carrier is not recursively enumerable because then the set of total recursive
function fromw to {0, 1} would be recursively enumerable as we have seen in the proof of
proposition 5.1.

The kernel of the carrier is co-semicomputable because given two elements of the domain of
the carrier we can compute the respective binary streams they represent. If their binary streams
are different, then they are different at a finite position and we find out computationally after
finite time. O

For coalgebraic specification this means, that when using final semantics the specified model
does exist but does not have the properties of a computable coalgebra. Neither can one computa-
tionally determine whether 2 states behave equally nor can the state space be decided. However,
the structure map is implementable in the sense that it is a recursive function. A consequence is
that the greatest bisimulation is not decidable which has consequences when using co-induction
combined with computability properties. In non-trivial cases one can at best expect the greatest
bisimulation to be co-semidecidable.

The undecidability of the carrier is a disadvantage, because you are not able to give a concrete
specification of it, e.g. as an algebra. This problem stems from the fact that you cannot recur-
sively enumerate the set of total recursive functions. Recursively enumerable would be the set
of partial recursive functions. Thus, the consideration of computable coalgebras motivates the
consideration of numbered coalgebras with partial tracking functions and therefore with partial
structure map.
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6 Partial Computable Coalgebras

In this section we will develop a theory of computable coalgebras with partial structure map. The
goal is to construct a final partial coalgebra and show that it has better computability properties
than the final total coalgebra.

6.1 Partial Numbered Coalgebras

The notion of numbering remains the same as for computable coalgebras, i.e. we use (total)
surjective maps from sets of natural numbers to somedsefA numbering is computable if

its domain is recursive and if additionally the kernel is decidable. Morphisms are defined as
follows:

Definition 6.1 A partial morphismf : (v4 : Q4 — A) — (v : Qp — B) is a partial
functionf : A — B, which can be tracked by a partial functigiy : 24 — Qp,i.e. fovais
defined iffug o fq is defined and if both are defined thér v4 = v o fq.

A partial morphism is called effective if it can be tracked by a partial recursive function.

Numbered Sets and partial morphisms form the cateBd&$eT. Functors inPNSET reflect
the same idea as FunctorsNISET but have to be defined for partial morphisms.

Definition 6.2 A functorF : PNSET — PN&ET is effective if there exists a recursive function
¢r such that whenevef : v4 — vy € PNETandFf = g : vg — vpr and fq tracks f then
or(fa) tracksg.

Definition 6.3 An effective functo’ in PNSET is called computable if whenevéf(v, :
Q4 — A)=(vp:Qp — B) then

o if Q4 is arecursive (recursively enumerable, co-recursively enumerable) seflsg is

e if =,, is recursive (recursively enumerable, co-recursively enumerable) sg jsand
there is a recursive functiotr such that ife is characteristic index of, ,, thenyr(e)
is characteristic index of,, ;.

A numbered partial coalgebra is again a morphism from some numberegd 8ef (v 4).

Definition 6.4 A numbered partial coalgebra for some effective funétorPNSET — PNSET
isatuple(vg : Q4 — A, v, — F(va)).

Let (v4,«) and (vp, ) be numbered partial coalgebras for some funckar A morphism
h : v4 — vp is a numbered partial coalgebra homomorphism i a total function,3 o h is
defined ifff'(h) o « is defined and if both are defined thér h = F'(h) o .

We use total morphisms because the intention of homomorphism is to be a mapping of the
structure. A partial homomorphism could not fulfil this intention, because it would only map
some part of the structure of a coalgebra. Please note that homomorphisms map elements of the
carrier that are not in the domain of the structure map to elements that are not in the domain of
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the image of this structure map. Thus, non-definedness is treated as structural property that is
preserved by homomorphisms.

Partial numbered coalgebras with an effective structure map and computable, semicomputable
or co-semicomputable carrier we will call partial effective coalgebras, partial computable coal-
gebras, partial semicomputable coalgebras and partial co-semicomputable coalgebras respec-
tively. The category formed by partial numberBecoalgebras and partial morphisms is denoted
by PNSETE, the category formed by partial computabblecoalgebras and partial effective mor-
phisms is denoted byPNSETg.

Bisimulation is defined as usual:

Definition 6.5 LetA = (v4: Q4 — A, o) andB = (vp : Qp — B, 3) be partial numbered
F-coalgebras. A numberingg : 2z — R for R C A x B is a bisimulation between the coal-
gebrasA and B if there exists a transition structuker : R — F(R) such that the projections
from R to A and B are partial coalgebra morphisms.

a € Aandb € B are bisimilar if there exists a bisimulatiomg for A and B such that
(a,b) € R.

The next results are needed to define a coalgebra that is final for the class of partial computable
coalgebras. They are equivalents of the presented results for total numbered coalgebras. The
proofs are omitted, because they are mostly equal to the ones presented above. However, one
has to take care of the case that a structure map is not defined for an element of a carrier.

Theorem 6.6 Let F' : PNSET — PNSET be a functor. In the categor NSETx of partial
numbered coalgebras all coproducts exist.

Lemma 6.7 The image(f, g)(vr) of two partial numbered coalgebra homomorphisgs
vpr — vy andg : vp — vp is a bisimulation between partial numbered coalgehias, o) and

(vB, B).

Theorem 6.8 The unionJ,, v of a family{v}+ of bisimulations between partial numbered
coalgebras4 and B is again a bisimulation.

Corolary 6.9 The set of all bisimulations between partial numbered coalgeldrand 5 is a
complete lattice with least upper bound given\gy % = |J, v%. The greatest bisimulation
betweend and B exists and is denoted bysz= |J{vr | v is a bisimulation betwees and
B.

Definition 6.10 Letvy : Qr — R be a bisimulation equivalence on the partial numbered
coalgebra(v4,a). The quotients/R is defined as/y/r : Q4 — A/R where A/R is the
quotient ofA by R andv 4 r(n) = [va(n)].

Proposition 6.11 Let vr be a bisimulation equivalence on a partial numbered coalgebra

(va,a). Letegr : va — vy g be the quotient map aR. Then there is a unique transition
structureay /g : va g — F(va/r) such thakp is a partial numbered coalgebra morphism.

21



Proof We cannot simply use the respective result for coalgebré&ein Instead one could
consider a total numbered coalgelprg , o’) for the functorF” + 1 which behaves likg¢v 4, o)

but maps tol if the structure map is not defined. Now the proof from lemma 4.10 can be
used for(v);, ). The resulting numbered quotient coalgebwa, /r, a4/ /r) is turned into a
partial numbered quotient coalgebra by forgetting the mappings Ttis is possible, because
the transformation represents an isomorphism between partial numBerealgebras and total
numberedr + 1 coalgebras. O

Lemma 6.12 Letvy : 2z — R be a bisimulation equivalence on a partial numbered coalge-
bra (v4, «) for some effective functdr then

1. If ais tracked by a recursive function so is the quotient coalgébtar, a4/ r)-

2. Ifvg andv 4 are computable (semicomputable, co-semicomputable)isg js

6.2 Final Partial Computable Coalgebras

For constructing a final partial numbered coalgebra we use the same method as for total num-
bered coalgebras. The carrier of the final coalgebra contains all pairs of natural numbers and
partial recursive functions

Yo ={(n, f) | n € w, f partial recursive

with the numbering using the enumeration functipn

vy, - QYO - }/0’ <TL,€> = (’I’L7(I)(€))
whereQy, = w, then

Yoo = F((id, m2)) o ®(my) o my

defines the structure map : vy, — F(vy,) = F(vy,) ©Yoa OV;ol making(rvy;, 7o) a partial
numbered coalgebra with computable tracking function.
At last we have to build the quotient @fy,, o) with respect to its greatest bisimulation

~YoYo-
(vy,7) = (Vvg570)/ ~Yove

Lemma 6.13 LetF : PNSET — PNSET be an effective functor withange(F(v)) # (). The
partial numbered coalgebrd = (vy, )

1. has an effective structure map;

2. has a carrier with recursive domain;

3. has a carrier with kernel that is not decidable;
4

. is final for the class of parital computable coalgebras for the effective fuitttor
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Proof (1) The recursivity ofy o follows from its definition. From lemma 6.12 follows that
is recursive, hencéy, ) is effective.

(2) Qy is by definition 6.10 equal t&yy which is defined as..

(3) Follows from the undecidability of the domain of recursive functions.

(4) First we show tha)’ forms a unique sink. The morphisty : A — Y, a — (n,a) with
va(n) = ais tracked by(id, e) the tupling of the identity function and an indexf aq. ! 4 is a
partial computable coalgebra homomorphism because

voly = F

HenceS = (14 : A — V) acobn(cPNseT,) IS @ sink. Itis unique becauseis the quotient by
the greatest bisimulation, hence simple and there is at most one arrow from every computable
coalgebra itPN&ETE to it.

Epiness: Partial coalgebra homomorphisms are total, hence we can apply the proof that was
used in the total case. Consider an elemenf some partial numberef-coalgebra4, an
partial numbered-coalgebraB and f,g : Y — Bwith f oS = go S. Since!y is unique
there is exactly ong € Y that is an homomorphic image af If f(!4(a)) = g(l4(a)) then
f(y) = g(y). Since this holds for all elements of dll-coalgebras, it holds that for ajl € Y

f(y) = g(y). Hencef = g. O

The functors that maps all numberings to the empty numbering are again excluded because the
kernel of the carrier would be decidable since all elements had the same behavior and would be
bisimilar. There are cases in which the kernel is semi-decidable, i.e. for the constant functor to a
computable numbering. However, in most nontrivial cases the kernel is completely undecidable,
which follows from the undecidability of the domain of recursive functions.

In conclusion, the final coalgebra for the class of partial computable coalgebras and the final
coalgebra for the class of partial computable coalgebras have different properties. While both
are effective, the partial one has a recursive domain and the total one has not. The kernel of
the carrier in the total case can have better properties than that in the partial case. However, for
nontrivial functors it is usually at most co-semidecidable.

7 Computable vs. Recursive Coalgebra

In [13] Osius introduced the notion of recursive coalgebra. The question arises if our notion
of effective coalgebra is related to the notion of recursive coalgebra. In order to answer this
we need to extend the notion of effectivity to coalgebraSer. The obvious way is to call a
coalgebra effective iff its carrier can be extended with a numbering which results in an effective
coalgebra.
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Definition 7.1 Let F' : SET — SET be a functor. A coalgebré4,a : A — F(A)) is called
effective/computable if there exists a numberning: 24 — A and an effective/computable
extensiorG for F' such that(v4, ) is an effective/computabt&-coalgebra inNSET.

The computable coalgebras 8&T are exactly the images of computable coalgebrad QT
under the canonical forgetful functor. The term recursive coalgebra is defined as follows:

Definition 7.2 LetF' : C — C be a functor. AnF'-coalgebra(C, ¢) is recursive iff for every
F-algebra(A, «) there exists a unique morphisfn C' — A such thatf = a o F(f) o ¢.

o< ¢

F(f)l lf

FAT>A

This definition represents some kind of induction scheme for coalgébra) which would
allow recursive function definitions. The following two examples of a computable coalgebra
that is not recursive and a recursive coalgebra that is not computable show that there is no direct
relation between the two notions.

Example 7.3 We use the binary stream functor from exanffavhich is an extension of the
SeT-functor {0, 1} x X and the following one element coalgeltta= ({a},a — (0,a)). Cis
trivially computable, i.e. with numberingy— « and identity as tracking function.

Consider the algebrad = ({b, ¢}, (x,y) — y). The mappingd1 : a — bandfy : a — ¢
make the diagram above commute. He@iég not recursive. O

Example 7.4 The fact that recursive coalgebras are not restricted in the cardinality of their
carriers but effective coalgebras are is used to show that there exist recursive coalgebras that
are not effective. Assume some recursive coalgélita some functor which has an extension

in NSET and is not empty. The coproduct of non-countably many copi€svaduld still be
recursive but its carrier would be non-countable and hence not computable. O

We can state the following proposition:

Proposition 7.5 The notion of computable/semicomputable and effective computable are not
equal to the notion of recursive coalgebra.

The notion of recursive and effective coalgebra are based on fundamentally different ideas.
Whereas that of effective coalgebra is intended to make coalgebras implementable on a machine,
the notion of recursive coalgebra represents some induction scheme and does not restrict the cat-
egory the coalgebras are build on. An open question to be investigated is if countable recursive
coalgebras are effective.
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8 Conclusion and Open Problems

We have defined a notion for computability in coalgebras based on enumerated sets and re-
cursive functions for the total and partial case. Basic properties known from coalgebra theory
have been shown for these computable coalgebras. Especially a final coalgebra with restricted
computability properties has been constructed.

Restrictions in the functor class might lead to better properties for the coalgebras. For instance
could computable data-types, discussed in [16], and co-datatypes [1] be used for functor defi-
nitions. In order to be useful in specifications, computable versions for exponent and powerset
functors as well as bifunctors must be developed.

With regard to the computability properties of the final coalgebras it would be interesting to
find criteria for the case that the kernel of the final models possess decidability properties. An
approach for that could be the restriction of the functor class. Another issue is to find appropriate
logics for computable coalgebras. Usually modal logics are considered for coalgebras as in [19]
and [15]. Since we are using recursive functions, equational logics that are used for computable
datatypes in [23] and [2], might also be an appropriate approach.
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